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1.  INTRODUCTION

The utility industry in the United States is clearly moving towards a restructured market in which the traditional vertical
integration of the industry may become all but obsolete.  The wholesale markets for electricity will also undergo change,
with a larger number of players and institutions and more complicated transactions and contract paths between seller and
buyer.  As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their
advantage to be able to specify the quantity of electricity available and the time of availability.  Since wind power plants
are driven by the stochastic nature of the wind itself, this can present difficulties to a wind plant operator.  A wind plant
operator who contracts for a sale of energy during periods of variable wind power output might be required to pay a
significant penalty if the actual power diverges significantly from the level specified by contract.  In previous work
Milligan, Miller, and Chapman (1995) provided estimates of the benefit of accurate wind forecasting to the utility.  To
the extent that an accurate forecast is available, contract deviations, and therefore penalties, can be significantly reduced.

Generating capacity that is available during the peak is worth more than off-peak capacity.  Even though we might have
the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period
to provide sufficient value.  However, if the wind power plant is developed over geographically disperse locations, the
timing and availability of wind power from these multiple sources could provide a better match with the utility's peak
load than a single site.

There are several wind plants in various stages of planning or development in the United States. Although some of these
are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional
developments planned in Wyoming and Iowa.  As these and other projects are planned and developed, there is a need
to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant.

In this paper, we use hourly wind-speed data from six geographically diverse sites collected by the Minnesota Department
of Public Service to provide some insight into the potential benefits of disperse wind plant development. We provide
hourly wind power from each of these sites to an electric reliability simulation model.  This model uses generating plant
characteristics of the generators within the state of Minnesota to calculate various reliability indices.  Since we lack data
on wholesale power transactions, we do not include them in our analysis, and we reduce the hourly load data accordingly.
We present and compare results of our methods and suggest some areas of future research.
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2.  THE POTENTIAL BENEFIT OF WIND POWER PLANT GEOGRAPHIC DIVERSITY

Wind can be described as a stochastic process.  As such, the power output from a wind power plant can vary substantially
through time, and it is not controllable in the same way as conventional power plants.  During lulls in the wind, electricity
must be supplied by other resources.  If geographically diverse wind sites can be chosen in such a way as to minimize
the number or extent of wind power lulls, this can be beneficial because conventional resource use can be reduced
accordingly.  The extent of this reduction will influence the magnitude of fuel cost, operations and maintenance, and other
costs to the utility.  Of course the increase in wind power generation is not without additional costs, such as O&M.

One of the first comprehensive studies to address the issue of geographical diversity of wind plants was done by Kahn
(1979), who used California wind and utility data.  He found that reliability does increase as a function of geographic
dispersal, but this increase is limited by the geographic wind diversity and the barrier of large wind plant penetrations
relative to the conventional generator mix.  Kahn also points out that wind sites that are uncorrelated will generally
provide better combined reliability than sites that are highly correlated, in absolute value.  However, Kahn’s analysis
ignores the fact that two or more wind regimes with significantly different time-scale properties can both provide the
same correlation with utility load (see Milligan and Artig, 1998).  A study by Brower (1993) found some benefits to
distributed wind development in Minnesota, but the benefits were somewhat constrained by the relatively high wind-
speed correlation between wind sites.

3.  STATE OF MINNESOTA DATA COLLECTION PROJECT

The wind resource data used in this study were collected through the Minnesota Department of Public Service's (DPS)
wind resource assessment programs and the DPS/U.S. Department of Energy (DOE) Tall Tower Wind Shear Study.  
DPS has conducted wind resource assessment since the early 1980's, providing utilities, developers, and other interested
persons with wind data collected at sites around the state.  Since the programs began, DPS has expanded and improved
the data collection process by  adding new monitoring sites and more sophisticated equipment.  

The monitoring sites which provided data for this paper are equipped with cellular data loggers that automatically send
the collected information to a base station computer located in DPS offices.  These sites use existing communication
towers and have monitoring levels at 30, 50, and 70 meters above ground level.  Two anemometers are mounted at each
level, one on each side of the tower.  This configuration has a number of advantages.  It reduces the wind shadow effect
the tower would have on the data if only one anemometer were used at each level;  it provides a degree of redundancy
at each level so that the failure of one sensor does not eliminate the data collection at that level; and it provides the
opportunity to do sensor-to-sensor calibration and helps diagnose potential problems with sensors.  Each tower is also
equipped with wind vanes at the 30 and 70 meter levels.   In addition to the internal logger temperature, some of the sites
are equipped with external temperature probes mounted at approximately 4 meters above ground level.  

In 1996, DPS, in cooperation with DOE, installed four advanced monitoring sites as part of the DPS/DOE Tall Tower
Wind Shear Study.  These sites use existing communication towers and have monitoring levels at 10, 30, 40, 50, 60, and
70 meters above ground.  As with the sites described above, each monitoring level has two anemometers, one mounted
on each side of the tower.  Each tower is also equipped with wind directional sensors at the 10, 30, 60, and 70 meter
levels.  
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Figure 1.  Wind sites chosen for this study

4.  WIND SITE SELECTION

We chose six wind sites that, in our judgement, did the best job of representing the diversity of climatology in the state.
The sites we selected are Alberta, Becker City, Brewster, Crookston, Currie, and Luverne.  They appear in Figure 1, and
are identified by the first two letters of the respective site name.  One of the unique features of the Minnesota DPS data
collection effort is that wind data is collected to a height of 70 meters.  This made it possible for us to use the power
curve of a modern utility-scale turbine at a hub-height of 65 meters.  A comparison of output at different hub-heights
appears in Milligan and Artig (1998).  We used wind data for one year beginning November, 1995.

For many utilities, simply maximizing wind energy capture during the system peak will not necessarily result in
maximum benefit.  The reason is that generating units’ ramp-rates and minimum-run levels may not allow for full
utilization of the wind power if there is significant variation in the timing of wind power delivery to the grid.  In addition,
it is possible that the ability to accurately forecast hourly wind speeds and the consequent hourly wind power output is
somewhat impaired by wind sites with high hourly variability.  For a more thorough discussion of the relationship
between wind forecasting and wind capacity credit, see Milligan, Miller, and Chapman (1995).  For these reasons, it may
be to the utility’s advantage to install wind plants and select among sites in such a way that hour-to-hour output
variations between wind plants are reduced, while still obtaining as much wind power output as possible during the peak
period.

Figures 2 and 3 illustrate some potential benefit from different sites.  The graphs are based on real wind data which was
used to calculate output of fictitious wind power plants, each with 100 MW of installed capacity.  The hourly wind power
is calculated by taking actual wind-speed data and applying calculating power output based on a utility-scale wind
turbine, as described more fully below.  Figure 2 shows a 48-hour period for three of the sites used in this study: Alberta,
Currie, and Luverne.  During the first day, the highest output comes from the Currie site, and Alberta and Luverne show
low power output.  The second day, wind power output at
Currie is low, whereas power output at both Alberta and
Luverne reach maximum rated output (less losses).
Power output at Luverne drops about 4-5 hours earlier
than at Alberta late in the second day.  Figure 3 shows
another view of multiple-site wind power output.  This
24-hour period shows a general correlation between sites,
yet one can also detect time-lags of 2-3 hours early and
late in the day.  These variations are somewhat typical of
the data used in this study and illustrate the potential
benefit of geographically diverse wind power plants.

Variations within a given wind plant are well-known,
providing some measure of diversity within even a
relatively small geographic area.  The extent to which this
intra-site variability would influence geographic
optimization is unclear. However, some of this intra-site
variability is because of local turbulence in what is known
as the turbulent scale of the relative spectral intensity of
the wind-speed (Stull, 1988).  For electrical reliability, we



0 

20 

40 

60 

80 

100 

W
in

d 
G

en
er

at
io

n 
(M

W
)

0 6 12 18 24 
Hours

Alberta Brewster Currie

Luverne Mean

0 

20 

40 

60 

80 

100 
W

in
d 

G
en

er
at

io
n 

(M
W

)

0 5 10 15 20 25 30 35 40 45
Hours

Alberta Currie Luverne Mean

4

Figure 3.  Wind power output over a 1-day period
from multiple sites

Figure 2.  Wind power output over a 2-day period
from multiple sites

must especially be concerned with the synoptic scale variation, generally less than one cycle per hour.  This allows us
to choose among several potential wind-plant sites so that generator reliability is optimized over the year, or other
relevant time period.

5.  MODELING

Electrical reliability is a function of customer demand and the characteristics of the various generators. Utilities
experience a pronounced peak period, often during several hours of the day during a particular season.  A utility can
sometimes dramatically increase its generator reliability by installing peaking units to generate power when it is most
needed:  during the peak hours.  Even though these peaking units might be available at night, their availability at night
would likely have a negligible effect on system reliability.  Likewise, a wind plant that delivers a significantly higher
annual energy output does not necessarily significantly contribute to system reliability.  What is needed is for the wind
output to occur at times of otherwise high-risk periods during system peak.

Kahn’s (1978) discussion centers around the statistical correlation between the various wind-plant sites.  Sites with high
positive correlation will provide higher output during the same time periods, whereas sites with high negative correlation
will be complementary.  When the first site is providing a high level of electrical output to the grid, the second site will
likely be idle.  Conversely, when the first site is not producing electricity, it is likely that the second site is.  Milligan and
Artig (1998) borrow from the analysis in Milligan and Parsons (1997), applying several methods that do not require the
use of a production cost or reliability model.

Reliability of the electrical system can be calculated by a production cost/reliability model.  The model we used is a load-
duration curve model, Elfin, and is produced by the Environmental Defense Fund.  The model uses hourly electrical load
data and generation data to calculate the optimal mix of generating resources required to serve the load.  The hourly loads
are arranged by subperiod and sorted, then arranged into a cumulative probability distribution.  Generating resources are
then matched to the load based on merit order, which is usually least-cost dispatch.  Since each generator has a
probability of failure, its dispatch is uncertain.  The model takes this into account during the dispatch simulation, and
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Figure 4.  Minnesota annual load-duration curve

various calculated  indices can then summarize
system reliability.  The two most common reliability
measures are loss-of-load expectation (LOLE) and
expected energy not served (ENS).  Figure 4 shows a
normalized load duration curve for the state of
Minnesota.  After all available generation has been
dispatched, there may be a small spike at the top of
the curve.  The vertical distance from the curve to the
100% level of peak represents the expected loss of
load, and the area of the spike representing the energy
unserved.  More details can be found in Milligan
(1996a).

The precise form of the optimal wind-plant reliability
problem may vary according to the customer loads,
wind sites, and characteristics of the utility system.
For example, a combination of wind regimes that all
exhibit diurnal variation may provide the utility an
opportunity to select a combination of sites that together have a high probability of offsetting system peak requirements.
Such a scenario might involve calculating various probability levels of wind generation during several peak hours every
day of the peak month(s).  Alternatively, when the wind resources do not follow a pronounced diurnal pattern, the utility
might be more interested in looking at the overall probability levels of wind generation during the month, without
necessarily allowing for a repetitive daily pattern in wind generation.

Choosing the best combination of wind sites can be done with a number of objective functions, depending on the what
the decision-makers believe is most  relevant .  Among these are (1) least-cost combinations of wind sites, (2) wind sites
that minimize load swings during system peak, or (3) most reliable wind sites.  The goals of least-cost production and
most-reliable production are usually not consistent with each other.  Reliability must be traded off against cost because
a perfectly reliable system (if one were to exist) would not be cost-effective.  Likewise, a least-cost solution might result
in a generating system that does not possess sufficient reliability.  For this analysis, we chose to pursue an optimization
based on reliability.  The results can be easily extended to capacity credit or other parameters of interest.

5.1.  Marginal Reliability Method

The first method is based on traditional marginal analysis.  Although this approach is widely used in economics, it is
difficult to apply to the problem at hand.  The difficulty is that the marginal reliability of a wind plant is potentially
different in each hour of the year, depending on customer load and other generating resource availability.  For example,
we could calculate the reliability of wind power plants at Brewster and Currie.  If Brewster appears to be the best choice
based on its marginal reliability, we can add 100 MW.  However, now that we have 100 MW at Brewster, the marginal
reliability of Currie will be very different than during the original comparison with Brewster.  We used this method, and
we compare the results to those of our preferred methods, below.

Since we do not have specific price information on wind development and production at these sites, we assume that the
installed cost in $/kW or $/MW is the same at all sites.  However, there is a difference in efficiency and reliability 
between sites because of the different winds experienced at each of the 6 different locations.  We can describe the
reliability level as a function of installed MW at each site: 
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(1)

(2)

Figure 5.  Marginal reliability curve for Becker Figure 6.  Marginal reliability curve for Brewster

where c  = reliable capacity, as measured as a function of 1/r, r is the reliability measure of choice: either LOLE or ENS,i

x  is the rated installed power capacity of the wind plant, and i is the subscript of the wind plant location, and 1 # i # 6.i

Finding the optimal mix of resources assuming the same price/kW at each site implies that we choose the quantity of
wind resources up to the point at which the marginal products of each site are equivalent (Varian, 1978).  Written in
terms of partial derivatives we have

œ i and j such that 1 # i, j # 6.

Figures 5 and 6 show the reliability curves for two sites, selected to illustrate variations in reliability. The y-axis shows
reliability, as measured by the marginal energy reliability index which is the marginal ENS, scaled to the interval (0,1)
for convenience.  From the diagram it is apparent that Brewster is clearly the more desirable site based on its marginal
reliability.  Becker was not chosen by this (or any other) algorithm. 

For each of the six wind sites, we made a series of model runs with Elfin, adding 25 MW at a time from each site until
the maximum of 500 MW was “built” at each of the sites.  We then chose the combination of sites that satisfied equation
(2), using the marginal ENS as the reliability measure, given the constraint of 500 MW total installed wind  capacity.
The optimal choice from this method is 75 MW at Alberta, 150 MW at Brewster, 125 MW at Currie, and 150 MW at
Luverne.  The algorithm did not select either the Becker or Crookston sites because the associated reliability curves are
much lower than those of the four selected sites. 

5.2.  Optimization with Elfin

This approach uses the production-cost/reliability model in such a way as to do a step-wise modification of the net
remaining load after each incremental wind plant is built.  This method could perhaps be best understood by referring
to Figure 7.  There are two possible variations of this approach.  The first uses LOLE as the optimization parameter.
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do until desired wind capacity is build
(1) calculate reliability parameter for X MW at

each wind site
(2) choose wind site with best reliability and

“build” an X MW wind plant at this site
(3) repeat

Figure 7.  Optimization Algorithm

Alberta Becker Brewster Crookston Currie Luverne

MW Built by ENS
Optimization

0 0 450 0 25 25

MW Built by LOLE
Optimization

0 0 250 0 225 25

Table 1.  Comparison of the Elfin Optimizations

The second variation uses ENS as the optimization
parameter.  The step in the diagram that illustrates the
choice of site with the best reliability parameter instructs us
to choose the wind site with the lowest parameter, either
LOLE or ENS, because higher values of LOLE and ENS
represent less reliable systems.  The step entitled “Build an
X MW wind plant” implies that the incremental size of the
plant to simulate building can be varied.  In our case, we
chose X = 25 MW as a reasonable trade-off between
accuracy and model run-time.  Smaller values of X might be
more accurate, although given the relative scale of X to the
hourly loads, we don’t think so.  Large values of X compromise the results because the optimization algorithm is
restricted to large increments of wind capacity, possibly overshooting a better mix of sites.

Following the outline of Figure 7, this is the optimization.  This discussion focuses on the use of ENS as the reliability
parameter, but the process is the same when we use LOLE as the optimization parameter.  First, we run Elfin without
any wind plants.  The next step is to run Elfin for a block of 25 MW of installed wind capacity at each site, separately.
We compare the ENS calculation at each site, and choose the site with the lowest ENS (best reliability).  The process
then simulates the building of 25 MW of wind capacity at the chosen site, and this becomes the new base case.  We repeat
the process, running Elfin for each site combined with the chosen site from the previous step.  Choose 25 MW from the
site with the best ENS, and repeat until all 500 MW of wind has been installed.  The algorithm then simply counts the
number of 25-MW increments of wind plants added at each of the sites, and that is our result.

The optimization using LOLE selects 250 MW at Brewster, 225 MW at Currie, and 25 MW at Luverne.  The ENS
optimization selects 450 MW at Brewster, 25 MW at Currie, and 25 MW at Luverne.  The results from this set of
optimizations appears in Table 1.  However, these results do not tell the whole story.  When we examined the selection
part of the optimization, we found that there were often extremely small differences in either LOLE or ENS between the
chosen site and the second or third runner-up.  This issue is discussed further in the next section.

5.3.  Inter-annual Variations and Uncertainty

The wind-speed data used for this study were collected by anemometers mounted on a single tower at each of the six sites
we analyzed.  Using a power-curve for a modern wind turbine, we calculated hypothetical power output, after accounting
for wake effects, and mechanical and electrical losses.  If 25-MW clusters of wind turbines were built on any of these
sites, however, each turbine would respond to somewhat different winds, depending on the terrain and microscale
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(3)

Alberta Becker Brewster Crookston Currie Luverne

MW Built by Fuzzy
ENS Optimization

38 0 215 0 120 127

MW Built by Fuzzy
LOLE Optimization

65 0 155 0 173 108

Table 2.  Comparison of Fuzzy Modeling Results

meteorological events.  We are therefore forced to accept the proposition that each time-series of wind-speeds represents
one of many possible series.  Although it is possible that each of these meteorological towers has been placed in a
“representative” location for the overall site, we have no assurances that this is indeed the case.  The implication of this
is that the precise calculations from our models are based on somewhat imprecise data. 

In previous work, we have also been somewhat skeptical of modeling that does not explicitly take inter-annual variations
in wind speed into account (Milligan, 1996b).  So far, this paper is also subject to that critique.  Due to data constraints
we were not able to perform a full analysis of the underlying time-series properties from multiple years of data at each
wind site, although that would be our preferred approach.  This would allow the use of sequential Monte Carlo runs with
Elfin, resulting in probability distributions of the reliability measures of each wind plant and combination of plants (see
Milligan and Graham, 1997).  Such an analysis would allow for the explicit accounting of the underlying probability
distributions, so as to help the decision-maker assess the impact of these variations.

In the absence of a more detailed analysis, we applied a technique borrowed from fuzzy logic (such as Monteiro &
Miranda, 1997, and Pereira et. al. 1997) to this problem.  The use of fuzzy logic allows our modeling to incorporate the
uncertainty associated with the issues discussed above.  We hypothesized that the LOLE and ENS measures that we
obtained from the Elfin optimization are fuzzy values, with variations ranging up to ± 0.5% of the calculated value.  The
choice of this range of values is based on the partial results of our optimization runs.  As we examined the reliability
values of the best site compared to the runners-up, there appeared to be a clustering of reliability values very close to the
optimal values, whereas the least optimal plants’ reliability values were significantly worse.  In our judgement, the choice
of 0.5% is a reasonable one, based on our data.  In the absence of specific probability distributions, we hypothesize that
the reliability measures are distributed uniformly on this interval, which is similar to other approaches using fuzzy
analysis.  We then modified the selection decision portion of the optimization algorithm to select not only the best single
site, but any site whose optimization parameter is within some small distance of the best choice.  Since we have no a
priori knowledge of which fuzzy value is best, we performed an analysis using stepwise increments from 0.0% up to
0.5% of the differences in the reliability measure and averaged the cases.  This amounts to choosing a 25-MW block of
installed wind capacity whenever

where c  is the reliable capacity of the best site, , is the fuzzy parameter expressed as a decimal, and c  represents thep                   i

capacity of plant i, 1 # i, p # 6, and p … i.  The results of this approach appear in Table 2.

Our preferred method is the fuzzy ENS approach because ENS represents the area under the load probability distribution,
whereas LOLE represents the height of the tail. Depending on relative costs of purchasing on-peak capacity and energy,
a utility could use whichever method is most appropriate.
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Figure 8.  Comparison of methods

5.4.  Comparison of Results

A summary of results appears in Figure 8.  Each bar in the diagram represents a single method.  The first three methods
provide similar results: the best combination of sites excludes Becker and Crookston.  In each of these cases, the lowest
recommended capacity is at Alberta.  Brewster and Currie are both recommended in the range of 125 MW to  about 200
MW, and Luverne’s share ranges from about 100 MW to about 150 MW.  The right side of the graph shows how
unstable the results can be when we use a deterministic approach.  A small amount of capacity at Luverne is chosen in
both cases, but there is clearly a very large difference in the capacity recommendations for Brewster and Currie.  The
reason for this disparity is because of the extremely close values in reliability that were often found among the runners-
up.  In this case, Brewster and Currie were very close in both the LOLE and ENS reliability measures, so small
differences between these measures altered the relative ranking of the sites.  This is one reason for the application of a
method that recognizes the role of uncertainty in the modeling.  The method of choice, in our judgement, is the fuzzy ENS
approach.  We believe that ENS provides a more robust measure of reliability, in general, than does LOLE, and is more
likely to be stable over short variations in load and generator parameters.

6.  CONCLUSIONS

Production-cost/reliability models can be applied to the problem of selecting among competing sites for wind generators.
However, the use of these models must be tempered with some judgement.  The wind sites that we have analyzed exhibit
some overall correlation, but also provide some benefit to the overall system reliability because of time lags in hourly
generation.  We believe that the fuzzy ENS analysis provides the best means of analysis of such problems.

Several additional factors could be introduced into future studies.  First, given additional intra-site data, the results would
be more accurate.  Second, these results are sensitive to the specific load and generator characteristics used by the model.
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Additional data on wholesale power transactions from the state of Minnesota would improve the accuracy of these
results.  Finally, a complete analysis of multiple years of hourly wind data at the various sites would provide additional
information about the trade-offs that could be expected between sites in future years. Constraints in the transmission
system and power flow have not been considered here, but it would be important to analyze these factors before
embarking on the installation of a large geographically diverse wind power system.
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